Convergence of the expansion of the Laplace-Borel integral in perturbative QCD improved by conformal mapping

نویسنده

  • Irinel Caprini
چکیده

The optimal conformal mapping of the Borel plane was recently used to accelerate the convergence of the perturbation expansions in QCD. In this work we discuss the relevance of the method for the calculation of the Laplace-Borel integral expressing formally the QCD Green functions. We define an optimal expansion of the Laplace-Borel integral in the principal value prescription and establish conditions under which the expansion is convergent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated convergence of perturbative QCD by optimal conformal mapping of the Borel plane

The technique of conformal mappings is applied to enlarge the convergence domain of the Borel series and to accelerate the convergence of Borel-summed Green functions in perturbative QCD. We use the optimal mapping, which takes into account the location of all the singularities of the Borel transform as well as the present knowledge about its behaviour near the first branch points. The determin...

متن کامل

Improved Conformal Mapping of the Borel Plane

The conformal mapping of the Borel plane can be utilized for the analytic continuation of the Borel transform to the entire positive real semi-axis and is thus helpful in the resummation of divergent perturbation series in quantum field theory. We observe that the rate of convergence can be improved by the application of Padé approximants to the Borel transform expressed as a function of the co...

متن کامل

Analytic structure in the coupling constant plane in perturbative QCD

We investigate the analytic structure of the Borel-summed perturbative QCD amplitudes in the complex plane of the coupling constant. Using the method of inverse Mellin transform, we show that the prescription dependent Borel-Laplace integral can be cast, under some conditions, into the form of a dispersion relation in the a-plane. We also discuss some recent works relating resummation prescript...

متن کامل

Bilocal expansion of Borel amplitude and hadronic tau decay width

The singular part of Borel transform of a QCD amplitude near the infrared renormalon can be expanded in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the accuracy of the ordinary perturbative expansion of the Borel amplitude. I...

متن کامل

Borel convergence of the variationally improved mass expansion and dynamical symmetry breaking

A modification of perturbation theory, known as delta-expansion (variationally improved perturbation), gave rigorously convergent series in some D = 1 models (oscillator energy levels) with factorially divergent ordinary perturbative expansions. In a generalization of variationally improved perturbation appropriate to renormalizable, asymptotically free theories, we show that the large expansio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000